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Microbial Film Model for the Interaction 
between Adsorption and Bacterial Activity in 
Fixed Bed Processes 

CHI TIEN 

DEPARTMENT OF CHEMICAL ENGINEERING A N D  MATERIALS SCIENCE 
SYRACUSE UNIVERSITY 
SYRACUSE, NEW YORK 13210 

ABSTRACT 

A chemical r e a c t i o n  - d i f f u s i o n  f i l m  model i s  presented  f o r  
t h e  d e s c r i p t i o n  of t h e  growth and presence  of microbia l  f i l m  out-  
s i d e  adsorbents  i n  f i x e d  bed processes .  The model w a s  t e s t e d  
a g a i n s t  experiments i n  which a n  aqueous s o l u t i o n  of v a l e r i c  a c i d  
was passed through a carbon bed and t h e  removal of v a l e r i c  a c i d  
from t h e  s o l u t i o n  w a s  
as a e r o b i c  and anaerobic  b a c t e r i a  p r e s e n t  i n  t h e  bed. 

e f f e c t e d  through carbon adsorp t ion  as w e l l  

INTRODUCTION 

The u s e  of s o l i d  adsorbents  f o r  t h e  removal of c e r t a i n  d is -  

solved subs tances  present  i n  l i q u i d  streams is an  engineer ing prac- 

t i ce  of long s tanding.  Adsorption processes  are c y c l i c  i n  n a t u r e ,  

beginning with f r e s h  adsorbents  and te rmina t ing  when t h e  adsor- 

b e n t s  become n e a r l y  s a t u r a t e d .  For f i x e d  bed o p e r a t i o n s ,  if t h e  

s a t u r a t i o n  phase i s  prolonged ( i . e .  t h e  d u r a t i o n  of c o n t a c t  between 

adsorbents  and l i q u i d  i s  length)  and fur thermore,  i f  some of t h e  

s p e c i e s  p r e s e n t  i n  t h e  l i q u i d  are biodegradable  i n  a d d i t i o n  t o  

being adsorbable ,  t h e  presence of b a c t e r i a  near  adsorbent  s u r f a c e s  

becomes l i k e l y ,  l ead ing  t o  t h e  formation of microbia l  f i l m  out- 

s i d e  adsorbents .  Such a s i t u a t i o n  occurs  i n  t h e  a p p l i c a t i o n  of 
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1416 TIEN 

granulax a c t i v a t e d  carbon f o r  water  and waste water t rea tment .  

The i n t e r a c t i o n  between t h e  b a c t e r i a l  a c t i v i t y  as exemplif ied 

by t h e  m i c r o b i a l  f i l m  o u t s i d e  adsorbents  and t h e  a d s o r p t i o n  pro- 

cesses is  myriad and indeed complex. A q u a l i t a t i v e  d e s c r i p t i o n  

of t h e  i n t e r a c t i o n  can b e  s t a t e d  as fo l lows:  

Microbia l  f i l m  o f f e r s  a d d i t i o n a l  r e s i s t a n c e  t o  mass 
t r a n s f e r .  Spec ies  t o  be  removed by a d s o r p t i o n  must 
f i r s t  d i f f u s e  a c r o s s  t h e  f i l m  b e f o r e  a d s o r p t i o n  can 
t a k e  p lace .  

Microbia l  f i l m  reduces t h e  void  space  of a d s o r p t i o n  
beds,  thus  causing bed clogging and i n c r e a s i n g  t h e  
p r e s s u r e  drop necessary  t o  m a i n t a i n  a g iven  through- 
put. 

Wash-off m i c r o b i a l  f i l m  may occur  under c e r t a i n  con- 
d i t i o n s  (e.g. when f i l m  t h i c k n e s s  exceeds c e r t a i n  
v a l u e s ) .  Consequently t h e  q u a l i t y  of e f f l u e n t s  
d e t e r i o r a t e s .  

B a c t e r i a l  a c t i v i t y  of m i c r o b i a l  f i l m  c o n t r i b u t e s  t o  
t h e  o v e r a l l  performance of a d s o r p t i o n  columns. The 
s p e c i e s  c?n be  removed by e i t h e r  a d s o r p t i o n  o r  bio- 
l o g i c a l  degrada t ion .  

The presence  o f  m i c r o b i a l  f i l m s  o u t s i d e  adsorbent. 
s u r f a c e s  causes  t h e  b i o r e g e n e r a t i o n  phenomenon. 
Experimental  d a t a  i n d i c a t e  t h a t  w i t h  b a c t e r i a l  act i -  
v i t y ,  s a t u r a t e d  adsorbents  can be  regenera ted  (1). 
S i m i l a r l y ,  i n  f i x e d  bed experiments ,  w i t h  m i c r o b i a l  
f i l m  forming o u t s i d e  adsorbents ,  a complete s a t u r a -  
t i o n  of adsorbents  cannot be  achieved i n  c e r t a i n  
cases .  

C e r t a i n  a s p e c t s  of t h e  i n t e r a c t i o n  are c l e a r l y  advantageous 

t o  t h e  intended s e p a r a t i o n  processes ,  w h i l e  o t h e r s  are d e f i n i t e l y  

d e l e t e r i o u s .  An optimum o p e r a t i o n  of a d s o r p t i o n  processes  wi th  

b a c t e r i a l  a c t i v i t y  t h e r e f o r e ,  r e q u i r e s  t h e  maximum e x p l o i t a t i o n  

of  t h e  p o t e n t i a l  advantages as w e l l  as t h e  suppress ion  o r  reduc- 

t i o n  of t h e  harmful  f a c t o r s .  To accomplish t h e  o p t i m i z a t i o n ,  a 

t h e o r e t i c a l  framework which ana lyzes  t h e  i n t e r a c t i o n  phenomenon 

and d e s c r i b e s  i t  q u a n t i t a t i v e l y  i s  obviously requi red .  The pres- 

e n t  work provides  a b r i e f  summary of such an e f f o r t .  
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MICROBIAL FILM MODEL 

DESCRIPTION OF MODEL 
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A number of i n v e s t i g a t o r s  (2,  3 ,  4 ,  5) have considered t h e  

model d e s c r i p t i o n  of m i c r o b i a l  

f a c e s  p r i m a r i l y  i n  connect ion w i t h  carbon t reatment  of water and 

waste water. The conceptual  model used h e r e  w a s  f i r s t  formulated 

by Andrews and Tien (5, 6 ,  7) and is shown i n  Figure 1. The 

presence of b a c t e r i a l  a c t i v i t y  l e a d s  t o  t h e  presence of m i c r o b i a l  

f i l m  o u t s i d e  adsorbents  i n  t h e  form of uniform coa t ing  whose th ick-  

ness  i n c r e a s e s  w i t h  time. The t i m e  dependence behavior  can be 

d i r e c t l y  r e l a t e d  w i t h  t h e  e x t e n t  of b a c t e r i a l  a c t i v i t y .  

f i l m  growth o u t s i d e  adsorbent  sur -  

The removal of t h e  s p e c i e s  from t h e  l i q u i d  stream is e f f e c t e d  

through t h e  s p e c i e s  uptake  by t h e  f i l m ,  N. On t h e  o t h e r  hand, only 

p a r t  of t h i s  f l u x  l e a d s  t o  adsorp t ion .  The adsorp t ion  f l u x  can b e  

c a l c u l a t e d  by t h e  concent ra t ion  p r o f i l e  of t h e  s p e c i e s  a c r o s s  t h e  

f i l m  a t  t h e  f i l m  base. 

F i g u r e  1.b shows a form of b ioregenera t ion  b u i l t  i n t o  t h e  

model. A s  t h e  f i l m  grows beyond a c e r t a i n  th ickness ,  an invers ion  

of t h e  s p e c i e s  concent ra t ion  p r o f i l e  i n  c o n t r a s t  t o  t h e  monotonic 

type  as shown i n  F igure  1.a may occur. I f  t h e  adsorp t ion  process  

i s  r e v e r s i b l e ,  t h i s  m e a n s  desorp t ion  of s p e c i e s  prev ious ly  adsorbed. 

Adsorbents t h e r e f o r e  become less s a t u r a t e d .  

S i n c e  t h e  growth of t h e  f i l m  is  slow i n  g e n e r a l ,  t h e  u s e  of 

t h e  pseudo s teady  s t a t e  assumption is  j u s t i f i e d .  The concent ra t ions  

of s p e c i e s  i, and S .  are  descr ibed  by t h e  fol lowing set of condi t ions :  

d2Si 

dx 
D 7 + R i = O  f o r  0 < x < R (1) 

R = o ,  t = o  ( 5) 
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X =P X ' O  

FIG I GROWTH OF A BACTERIAL FLM ON AN ADSORBENT SURFACE 

where S 

sate of consumption of t h e  i - t h  s p e c i e s  d u e  t o  b a c t e r i a l  a c t i v i t y .  

The c o n c e n t r a t i o n  p r o f i l e  of t h e  i - t h  s p e c i e s  can  b e  o b t a i n e d  from 

t h e  s o l u t i o n  of Equa t ion  (1) w i t h  a p p r o p r i a t e  boundary c o n d i t i o n s .  

d e n o t e s  t h e  c o n c e n t r a t i o n  of t h e  i - t h  s p e c i e s  and Ri is  t h e  i 

Once t h e  c o n c e n t r a t i o n  p r o f i l e  is  known, t h e  s p e c i e s  u p t a k e  ra te ,  

c a n  b e  found r e a d i l y  from Equa t ions  

The growth ra te  of t h e  f i l m  c a n  b e  found from Equa t ion  

N and t h e  r a t e  of a d s o r p t i o n ,  N 

( 2 )  and ( 3 ) .  

( 4 ) .  
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MICROBIAL FILM MODEL 1419 

ADOPTION OF THE MODEL TO FIXED BED PROCESSES 

The conceptual  model descr ibed  above has  been a p p l i e d  t o  a num- 

b e r  of s i t u a t i o n s  ( 7 ,  8) under t h e  assumption t h a t  t h e  n a t u r e  of t h e  

b a c t e r i a l  a c t i v i t y  i s  independent of t h e  f i l m  th ickness .  For example, 

l i q u i d  wastes which r e q u i r e  t reatment  w i t h  a c t i v a t e d  carbon i n e v i t a b l y  

c o n t a i n  a c e r t a i n  amount of d i sso lved  oxygen (DO). Accordingly, f o r  

t h i n  m i c r o b i a l  f i l m ,  t h e  b i o l o g i c a l  a c t i v i t y  is l i k e l y  t o  b e  a e r o b i c  

r e s p i r a t i o n .  A s  t h e  f i l m  th ickness  i n c r e a s e s ,  t h e  d e p l e t i o n  of DO i n  

t h e  o u t e r  p o r t i o n  of t h e  f i l m  renders  t h e  b a c t e r i a l  a c t i v i t y  i n  t h e  

i n n e r  p a r t  of t h e  f i l m  anaerobic .  The i n c l u s i o n  of t h i s  b i - layer  be- 

havior  of microbia l  f i l m  is considered i n  t h e  p r e s e n t  work. 

The process  considered h e r e  can be descr ibed  as fol lows:  A l i q u i d  

s o l u t i o n  conta in ing  an  adsorbable  and biodegradable  s p e c i e s  as w e l l  as 

o t h e r  necessary inorganic  salts is  passed through a column packed 

w i t h  granular  adsorbents .  The assumptions used are: 

The column has  a uniform c r o s s  s e c t i o n  and t h e  adsor- 
b e n t s  

The d i s p e r s i o n  e f f e c t  i s  n e g l i g i b l e .  

The rate of t h e  b a c t e r i a l  a c t i v i t y  is f i r s t  o rder  w i t h  
r e s p e c t  t o  t h e  concent ra t ion  of t h e  adsorbable  spec ies .  

The b a c t e r i a l  a c t i v i t y  of t h e  m i c r o b i a l  f i l m  is  a e r o b i c  
as long as t h e r e  is d i s s o l v e d  oxygen present .  Wherever 
t h e  d isso lved  oxygen is completely deple ted ,  t h e  bac ter -  
i a l  a c t i v i t y  becomes anaerobic  lead ing  t o  t h e  removal of 
n i t r a t e  sa l t  from t h e  s o l u t i o n .  

I n  both a e r o b i c  and anaerobic  growth, t h e  b i o l o g i c a l  
pathways are i n v a r i a n t .  The consumption of s u b s t r a t e s  
(adsorbable  s p e c i e s )  fo l lows  a f i x e d  s t o i c h i o m e t r i c  
r e l a t i o n s h i p .  

The e f f e c t  of outward d i f f u s i o n  of b i o l o g i c a l  end pro- 
d u c t s  a c r o s s  t h e  f i l m  i s  n e g l i g i b l e .  

There is l i t t l e  wash-off and b a s a l  metabolism from t h e  
f i l m .  

are s p h e r i c a l  and uniform i n  s i z e .  

I n  a d d i t i o n ,  t h e  assumptions commonly used i n  f i x e d  bed pro- 

c e s s e s  such as i so thermal ,  s t e a d y - s t a t e  one dimensional plug flow, 

uniform packing, etc. a r e  involved. 
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1420 TIEN 

The macroscopic conserva t ion  equat ion  f o r  t h e  adsorbable  s p e c i e s ,  

t h e  d i s s o l v e d  oxygen and n i t r a t e  i n  t h e  l i q u i d  phase can b e  w r i t t e n  

as 
u m + ( 1 - E ) - N  3 = O  

a z  a c  

a ro2 1 3 u -  + (1 - E) a NO2 = 0 a Z  
P 

u- a [NO3 1 + (1 - E) a 3 NN03 = 0 
a Z  

P 

where [c], [O,] and EO,] are t h e  c o n c e n t r a t i o n s  of t h e  adsorbable  

s p e c i e s ,  t h e  d i s s o l v e d  oxygen and n i t r a t e  sa l t  r e s p e c t i v e l y .  The 

independent v a r i a b l e  z denotes  t h e  a x i a l  d i s t a n c e  measured from t h e  

i.nlet. u is t h e  s u p e r f i c i a l  v e l o c i t y .  E is  t h e  void  f r a c t i o n  of 

t h e  carbon bed. a i s  t h e  r a d i u s  of each carbon granule .  
P 

Nc' N029 To estimate s u b s t r a t e  up take  f l u x e s  of the b i o f i l m ,  

and NNO , Equation (1) can b e  a p p l i e d .  The r e l e v a n t  equat ions  are 
3 

I n  t h e  reg ion  

I R C x < L  

I n  t h e  reg ion  

O < x < R 1  

d2Sc 
Dc - = dx 2 kvsc 

Do - = 
dx 

2 
'NO3 

2 dx 
DN - = 0 (7  .c> 

d2Sc 

dx 
Dc 7 = akvSc (8.a) 

s = o  
92 

dLSN03 

dx 
DN 7 = YkvSc 

where R i s  t h e  t h i c k n e s s  of t h e  anaerobic  f i lm.  a ,  6 and y are t h e  

r e a c t i o n  r a t e  r a t i o s  of n i t r a t e  r e s p i r a t i o n ,  oxygen reduct ion  and de- 

n i t r i f i c a t i o n  t o  t h e  a e r o b i c  r e s p i r a t i o n  r e s p e c t i v e l y .  

I 
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MICROBIAL FILM MODEL 1421 

The boundary c o n d i t i o n s  of Equat ions (7 )  and (8) are as fo l lows  

A t x = k  

A t x = O  

2 
A t x = k  

dSc a - = m % =  k (qi - q) 
Dc dx 3 de p 

dSNO 

dx 
-- 3 - ~  

dS 02 
0 - =  

dx 

(12) 

when RI > 0 ,  i n  a d d i t i o n  t o  t h e  boundary c o n d i t i o n s ,  t h e  i n t e r f a c e  

c o n d i t i o n s  are 

(15) 

S - 0  
O2 I x < RI 

‘NOg 

tl I +=q ILI - 

*I XI + = * I  %- 
qi = f ( S  ) I x=o 

(19) 

(20) 

where f ( S )  is  the a d s o r p t i o n  isotherm.  I n  o t h e r  words, e q u i l i b r i u m  

c o n d i t i o n  i s  assumed a t  t h e  f i l m  base.  The f i l m  growth rate can b e  

r e l a t e d  w i t h  t h e  b a c t e r i a l  a c t i v i t y  throughout  t h e  f i l m  as 
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1 4 2 %  

where (7 is t h e  b i o f i l m  o r g a n i c  carbon p e r  u n i t  weight  of carbon 

g r a n u l e  and p i s  t h e  o r g a n i c  carbon d e n s i t y  of t h e  f i l m  and p is 

t h e  carbon g r a n u l e  d e n s i t y .  S u p e r s c r i p t s  (1) and ( 2 )  denote  t h e  

reg ions  of x > RI (aerobic)  and x < RI (anaerobic) ,  where Y1 and Y 2  

a re  t h e  corresponding y i e l d  c o e f f i c i e n t s .  e ( = t  - ZE/U) is t h e  cor -  

r e c t e d  t i m e .  

b 

P 

Equat ions (16) - (22) c o n s t i t u t e  a complete d e s c r i p t i o n  of 

b a c t e r i a l  growth, a d s o r p t i o n  and s u b s t r a t e  r e d u c t i o n  i n  t h e  GAC 

column. The a lgor i thms developed by Vanier (9 )  can b e  used f o r  

t h e  numerical  s o l u t i o n .  

PARAMETER ESTIMATION 

The model d i s c u s s e d  above i s  formulated w i t h  t h e  u s e  of t e n  

1s Y 2 s  kvs a ,  6 %  Y s  P, Dc,  Do and D ) as N b i o l o g i c a l  parameters  (Y 

w e l l  a s  t h e  u s u a l  a d s o r p t i o n  parameters  ( i so therm parameters ,  . 
The a d s o r p t i o n  parameters  can be  obta ined  from the a p p r o p r i a t e  

adsorp t ion  measurements. For t h e  de te rmina t ion  of t h e  b i o l o g i c a l  

parameters, Andrews (6)  proposed a procedure involv ing  t h e  u s e  of 

a f - lu id ized  bed r e a c t o r  and non-adsorbing p a r t i c l e s  ( c o a l ) .  The 

i l u i d i z e d  bed appara tus  f u n c t i o n s  a s  a completely s t i r r e d  tank  

r e a c t o r  (CSTR) from which c o n c e n t r a t i o n  h i s t o r i e s  of d i sso lved  

o r g a n i c  carbon (DOC), d i s s o l v e d  oxygen (DO) n i t r a t e ,  and t o t a l  

(organic carbon (TOC) as w e l l  as t h e  h i s t o r y  of bed h e i g h t  expan- 

s i o n  can b e  measured. The appara tus  can b e  opera ted  under e i t h e r  

a e r o b i c  o r  anaerobic  c o n d i t i o n s .  

kP) 

Under t h e  c o n d i t i o n  of anaerobic  growth, t h e  conserva t ion  

equat ions  become 
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w AIL! = [Clin - [c-j - - - d t  FY,, d t  T 
L 

(23) 

( 2 4 )  

- A(TC)  

(26) v 1 apPn. (2) (2) 3Y T -- dab = J“k,D, [C] t a n h  1”,” ub 
ap pP c p  

d t  

I n  the f l u i d i z e d  r e a c t o r ,  t h e  b i o f i l m  volume can be  r e l a t e d  

t o  the bed h e i g h t  expansion as (10) 
H - -  1 H 

1 - E  
a (2) = P c  

FP 
b 

where H and H 

and E i s  t h e  expansion f a c t o r .  

are bed h e i g h t  and c l e a n  bed h e i g h t  r e s p e c t i v e l y  

The s o l u t i o n  of t h e  above equat ions ,  t o g e t h e r  w i t h  t h e  d a t a  

of t h e  c o n c e n t r a t i o n  h i s t o r i e s  and bed h e i g h t  h i s t o r i e s  e n a b l e  t h e  

de te rmina t ion  of Y2, Y , p ,  Also,  if t h e  i n l e t  solu-  

t i o n  is  n o t  deoxygenated, t h e  d a t a  o b t a i n e d  dur ing  t h e  i n i t i a l  per- 

i o d  of measurement w i l l  p rovide  the v a l u e s  of Y, 6, k, and Do . The 

b a s i s  used t o  e v a l u a t e  t h e  parameters  i s  t h e  a p p l i c a t i o n  of t i e  bio- 

f i l m  equat ions  ji.e. Equat ions (7) - (21)] 
t a n k  r e a c t o r  system (CSTR) which can b e  used t o  approximate t h e  

f l u i d i z e d  bed r e a c t o r  w i t h  l a r g e  r e c y c l e  r a t i o .  

ments are  conducted w i t h  non-adsorbing p a r t i c l e s ,  t h e  r i g h t  hand 

s i d e  of Equat ion (12)  equa ls  zero.  

akv, and Dc. 

t o  a completely s t i r r e d  

S i n c e  t h e  measure- 

EXPERIMENTAL WORK AND COMPARISON WITH MODEL 

Some pre l iminary  experiments  were performed and compared w i t h  

model p r e d i c t i o n s .  

aqueous s o l u t i o n  of v a l e r i c  a c i d - n i t r a t e  sa l t  through a g r a n u l a r  

carbon column (see Fig. 2 f o r  experimental  a p p a r a t u s ) .  The e f f l u -  

The experimental  work c o n s i s t e d  of pass ing  an 
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NOT TO SCALE 
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Fig.  2. 

KH2 Po,, etc I 1  
I 

Valerc Acidt Now3 Fed &mp 

Fixed Bed Apparatus  

e n t  c o n c e n t r a t i o n s  and bed h e i g h t  expansion were monitored. The 

i n i t i a t i o n  of b a c t e r i a l  a c t i v i t y  w a s  made by i n t r o d u c i n g  a f i x e d  

q u a n t i t y  of c u l t u r e  a t  t h e  beginning of each run. The experimental  

c o n d i t i o n s  a r e  summarized i n  Table  1. 

As  a n  i n d i c a t i o n  of t h e  v a l i d i t y  of t h e  b i - layer  model, Fig. 3 

shows t h e  comparison between t h e  exper imenta l ly  determined ef f lu-  

e n t  c o n c e n t r a t i o n  h i s t o r i e s  ( d i s s o l v e d  oxygen, n i t r a t e  and d i s s o l v e d  

or,ganic carbon)  and t h e  p r e d i c t i o n  from t h e  s o l u t i o n s  of Equat ions 

(6 )  - ( 2 2 ) .  Both t h e  n i t r a t e  c o n c e n t r a t i o n  h i s t o r y  and t h e  d i s s o l v e d  

o r g a n i c  carbon c o n c e n t r a t i o n  h i s t o r y  g i v e  reasonably  good agreement. 

For t h e  d i s s o l v e d  oxygen c o n c e n t r a t i o n ,  t h e  comparison w a s  marginal .  

However, it should b e  noted t h a t  none of t h e  c o n c e n t r a t i o n s  can be  

determined w i t h  s u f f i c i e n t  accuracy.  More impor tan t ly ,  i n  making 
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TABLE 1 
Experimental Condi t ions 

Carbon P a r t i c l e  S i z e  0 .3  mm 

Void F r a c t i o n  of Bed app. 0.42 

Volumetric Flow Rate 27 ern /see.  3 

Bed Height 30 c m  

Composition of I n f l u e n t  (Bas is  1 !?, t a p  water )  

1 7  mg Na2S04 106.5 mg f o r  aer- 
m2p04 ob ic  growth 
K2HP04 43.5 mg C O ( N O ~ ) ~ - ~ H ~ O  0.23 mg 

Na2KPO4-7H 0 66.8 mg Valeric Acid 30 - 40 mg DOC 

NH4C1 70 rng NaN03/Va1eric 6.5 g/g 

Na2S03 94.5 mg f o r  anae- Dissolved Oxygen-Up t o  7 mg 

2 

Acid 

r o b i c  growth 

DAYS 

Fig.  3. T h e o r e t i c a l  and Experimental S u b s t r a t e  Concent ra t ions  - Run 1 
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t h e  p r e d i c t i o n ,  a l l  t h e  model pa rame te r s  were determined o r  estim- 

a t e d  acco rd ing  t o  a w e l l - p r e s c r i b e d  p rocedure  and t h e r e  w a s  no 

a t t e m p t  t o  improve t h e  f i t  by u s e  of a d j u s t a b l e  pa rame te r s .  Under 

the c i r cums tances  t h e  d e g r e e  of agreement observed may p r o v i d e  

optimism as t o  t h e  v a l i d i t y  of t h e  b a s i c  model. A more d e f i n i t i v e  

conc lus ion  cannot  b e  made u n t i l  more e x t e n s i v e  d a t a  becomes a v a i l -  

a b l e .  

ACKNOWLEDGEMENT 

Th i s  s tudy  w a s  performed under  Grant  No. CPE 79-08893 from 

t h e  N a t i o n a l  S c i e n c e  Foundat ion.  

NOMENCLATURE 

a 
P 

n 

F 

kV 

k 

9, 
P 

hi 

N A 

q i  

S 

R 

S 

u 

p a r t i c l e  r a d i u s  

d i f f u s i v i t y  of s u b s t r a t e  i n  t h e  m i c r o b i a l  f i l m  

v o l u m e t r i c  f l o w  ra te  through r e a c t o r  

b i o l o g i c a l  r e a c t i o n  rate c o n s t a n t  

p a r t i c l e  phase  mass t r a n s f e r  c o e f f i c i e n t  

f i l m  t h i c k n e s s  

t h i c k n e s s  of t h e  o u t e r  p o r t i o n s  of t h e  f i l m ,  where 
a e r o b i c  r es p i r  a t i o  n dominates  

s u b s t r a t e  up take  ra te  of m i c r o b i a l  f i l m  from l i q u i d  

ra te  of a d s o r p t i o n  

adso rbed  p h a s e  c o n c e n t r a t i o n  at  adsorbed s u r f a c e  

a v e r a g e  c o n c e n t r a t i o n  of adso rben t  

ra te  of b i o l o g i c a l  d e g r a d a t i o n  of s u b s t r a t e  

s u b s t r a t e  c o n c e n t r a t i o n  i n  f i l m  

s u p e r f i c i a l  v e l o c i t y  

d i s t a n c e  measured from adso rben t  s u r f a c e s  
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Y1, Y 2  
y i e l d  r a t i o  of anaerobic  and a e r o b i c  r e s p i r a t i o n s  
r e s p e c t i v e l y  

Z a x i a l  d i s t a n c e  

W weight of c o a l  par t ic les  i n  f l u i d i z e d  r e a c t o r  

Greek Letters 

a ,  f3 ,  y s t o i c h i o m e t r i c  r a t i c s o f  b a c t e r i a l  degrada t ion  r e a c t i o n s  

b a c t e r i a l  o rganic  carbon per  u n i t  of adsorbent  

organic  carbon dens i ty  

t i m e  

r e a c t o r  r e s i d e n c e  t i m e  
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